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Abstract: - This paper deals with an employment of the complex modulators and generalized receivers constru-
cted based on the generalized approach to signal processing (GASP) in noise in quaternary direct-sequence 
spread-spectrum multiple-access (DS-SSMA) communication systems with complex signature sequences in flat 
Rayleigh fading. Owing to availability of large sets of complex spreading sequences possessing perfect correla-
tion characteristics, the interest to use the complex spreading sequences in DS-SSMA communication systems 
has increased. The complex spreading sequences investigated in the present paper are based on the recently int-
roduced orthogonal unified complex Hadamard transform (UCHN) sequences. In the present paper, the compl- ex 
processing in modulators and generalized receivers is also employed with the purpose to take advantage of the 
correlation properties of complex signature sequences. We derive the average bit error rate (BER) for quart-
ernary synchronous communications system based on the generalized approach to signal processing in noise first, 
and then the BER for quaternary asynchronous ones is evaluated using the characteristic function appro- ach. We 
presented some results based on the Gaussian approximation method for asynchronous communication systems 
constructed on the basis of the generalized approach to signal processing in noise Computer modeling results 
demonstrate that the communication systems using UCHT spreading sequences perform generally better 

than the GOLD sequences and the 4-phase family A sequences. Comparative analysis between the asynchrono-
us communication systems constructed on the basis of the generalized approach to signal processing in noise 
demonstrates superiority over the asynchronous communication systems employing the correlation receiver. 

Key-Words: - Generalized receiver, quaternary direct-sequence spread-spectrum multiple-access (DS-SSMA) communi-
cations, Rayleigh fading, unified complex Hadamard Transform (UCHN) complex sequences.
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1 Introduction 
In last several decades, the direct-sequence spread-
spectrum multiple-access (DS-SSMA) technique has 
attracted a lot of attention as a transmission method 
providing spectrum efficiency, high system capaci-
ty, multipath propagation, interference robustness, 
and improved quality of service [1]-[3]. In DS-
SSMA communication systems, the characteristics 
of the spreading codes provide a crucial effect on 
the performance of the whole communication syst-
em [4], [5]. How much interference from other users 
is received at a receiver is determined by the signa-
ture sequences. Additionally, the signature sequen-
ces influence on the extraction capability of desired 
signal from noise-like spectrum. The orthogonal 
spreading sequences are characterized by the zero 
cross correlation for zero delay. This fact has attract-
ed a great attention in research and applications. 
     The polyphase complex sequences such as Frank 
-Zadoff-Chu sequences in [2], [6], and [7] have the 
excellent correlation properties and can be 3 dB bet-
ter than the binary real Gold sequences in the maxi-

mum periodic correlation parameters. Also, the lar-
ger sets of complex sequences are available. Owing 
to the fact that the complex sequences exhibit the 
better autocorrelation and improved cross correlati-
on properties than binary real sequences, the appli-
cation of the complex sequences in DS-SSMA has a 
great research interest [8]-[10]. However, these co-
mplex sequences are non-orthogonal.  They can be 
categorized as complex-valued pseudo-random spre-
ading sequences. A set of the orthogonal 4-phase co-
mplex sequences that are derived from the unified 
complex Hadamard Transform (UCHT) matrix [11] 
was introduced in [10]. 
     Therein, the correlation properties of the UCHT 
complex sequences were obtained, and simulation 
results were given by applying the UCHT sequences 
to the binary phase shift keying (BPSK) DS-SSMA 
systems over the additive white Gaussian noise 
(AWGN) channels. DS-SSMA systems and their pe-
rformance evaluation techniques have been discuss-
ed in [1], [4] and [12]. In [8] and [9] the performan-
ce bounds for DS-SSMA systems with complex sig-
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nature sequences were investigated for the binary 
PSK data signalling and for M-ary PSK data signall-
ing. The modulators and receivers discussed in these 
papers use the real processing. For instance, in the 
IS-95 CDMA mobile cellular system [1], both for-
ward and reverse links use the forms of quadrature 
phase shift keying (QPSK) spread-spectrum modul-
ation in which the same baseband binary signalling 
data stream modulates both in-phase (I) and quadra-
ture (Q) binary real spreading sequences, and the re-
ceiver may employ separate I and Q real processing 
of the spread-spectrum signal with binary real sprea-
ding sequences. 
     This paper adopts a new receiver based on the 
generalized approach to signal processing in noise 
[13]-[18] employing the complex processing instead 
of real. Hence, for the quaternary DS-SSMA syst-
ems, the modulators and generalized receivers are 
complex and not performed in separate in-phase and 
quadrature branches. All research results in the lite-
rature mentioned above are established over AWGN 
channels. It is well known that the fading and multi-
ple-access interference (MAI) are two major sources 
of degradation in wireless and CDMA communicati-
on systems. Therefore, analysis of the DS-SSMA 
communication systems performance on fading cha-
nnels is of considerable theoretical and practical int-
erest. 
    Many papers deal with the error probability perf-
ormance evaluations for binary DS-SSMA systems 
operating in fading channels with real binary sprea-
ding sequences [19]-[23]. In [19] the signal-to-noise 
ratio (SNR) is studied at the output of the correlati-
on receiver for Rician fading channels. The perfor-
mances of DS-SSMA systems over Rayleigh fading 
channels are investigated in [20] for deterministic 
binary sequences and in [22] for random binary seq-
uences. The influence of Rician factor of κ-μ short- 
term fading, κ-μ short-term fading severity paramet-
er, Gamma long-term fading severity parameter and 
Gamma long-term fading correlation coefficient on 
level crossing rate is studied and discussed in [23] 
under consideration of the macrodiversity with sele-
ction combining receiver and two microdiversity  
maximum ratio combining receivers. However, the-
re is no the result for the error probability performa-
nce analysis of quaternary DS-SSMA systems that 
operate in Rayleigh fading channels and employ the 
complex spreading sequence, as well as complex 
processing at the transmitters and receivers. 
     We carry out the comparative analysis between 
performances of the DS-SSMA communication sys-
tems based on the correlation and generalized recei-
vers for this case. The main goal of this paper is to 
investigate the performance of the quaternary DS-

SSMA communication system based on the genera-
lized approach to signal processing in noise with co-
mplex signature sequences in the presence of the flat 
Rayleigh fading employing the generalized receiver 
and compare the performance of the quaternary DS-
SSMA communication system employing the corre-
lation receiver. The complex spreading sequences 
include the orthogonal quaternary UCHT complex 
sequences [11]. In this paper the bit error rate (BER) 
performance evaluation is first developed for the sy-
nchronous complex quaternary DS-SSMA systems 
employing the generalized receiver. Then the BER 
is evaluated for the asynchronous complex quarter-
nary DS-SSMA systems employing the generalized 
receiver based on both the characteristic function 
approach and Gaussian approximation method.  
     The reminder of this paper is organized as foll-
ows. Section II presents some basic definitions and 
review of UCHT sequences. Section III studies the 
quaternary DS-SSMA system model with complex 
signature sequences in Rayleigh fading based on the 
generalized approach to signal processing in noise. 
The BER performance is evaluated in Section IV for 
quaternary synchronous and asynchronous systems 
with the complex signature sequences employing 
the generalized receiver under complex processing. 
Numerical results and comparative analysis of per-
formance between the quaternary DS-SSMA comm-
unication system based on the generalized approach 
to signal processing in noise with complex signature 
sequences in the presence of the flat Rayleigh fading 
employing the generalized receiver and the quarter-
nary DS-SSMA communication system employing 
the correlation receiver is presented in Section V. 
Some conclusion remarks are made in Section VI.  

2 Basic Definitions 
In this section, we will define the unified complex 
Hadamard transform (UCHT) matrix that generates 
orthogonal complex sequences by its rows. The 
UCHT matrix nU of order nN 2 is the square matrix 
and can be constructed by the following form [9], 
[10] 
                




times  n

nn UUUUU 1111                     (1) 

wheredenotes the Kronecker product of matrices; 

1U is defined as 

                          










322

311
1 


U                         (2) 

with },,1,1{,, 321 jj  and 1j , 1 . Note that 

1U satisfies to the condition 

                           21111 2IUUUU                          (3) 
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and 
                              22

1 2|det| U ,                            (4) 

where 
1U represents the complex conjugate transpo-

se of the matrix 1U . Hence, 1U is the complex ortho-
gonal Hadamard matrix and the UCHT matrix is co-
mplex orthogonal [24]. Moreover, it is obvious that 

1U is a unified form of 64 different matrices with el-

ements in },1{ j , and among them, there are 8 ma-
trices with all four different element values. UCHT 
matrices contain the Walsh-Hadamard transform 
(WHT) matrix as a special case with ,1,1 21   3  

1 in the matrix 1U . 

     In addition, since the elements of the matrix 1U  

are confined to four values },1{ j , UCHT repres-
ents the mapping of four-valued integers into a unit 
circle of complex plane. For example, UCHT can be 
used as four-valued complex transform that maps 
four integers )3,2,1,0( into ),1,,1( jj  [10]. From the 
above discussion, 64 sets of orthogonal sequences 
can be generated depending on the various combina-
tions of 321,   and . Depending on whether 3 is 
imaginary or real, these UCHT matrices can be cate-
gorized into two groups [11], i.e., UCHT with half-
spectrum-property (HSP-UCHT) and UCHT witho-
ut half-spectrum-property (NHSP-UCHT). Each 
group has 32 sets of UCHT matrices. 
     Let each row of one UCHT matrix be a complex 
sequence. Then the sequence )(ia represents the i-th 
row of the corresponding UCHT matrix, and the m-
th element of )(ia is ),()( miua i

m  , where ),( miu  is the 
element of the UCHT matrix. By repeating the 
UCHT sequences, nN 2 orthogonal UCHT sequen-
ces with the periods of N are produced. For any two 
periodic sequences )(ka and )(ia with period N, the 
aperiodic cross correlation function is defined in 
[25] as 
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If ik  , the cross correlation function is the autocor-
relation function )()( , lRlR iii  .  
     Introduce some notation for the complex-valued 
random variables. The cumulative distribution func-
tion of a complex variable Z is specified by giving 
the joint distribution of its real and imaginary parts, 
i.e. 

    ),}{,}{(),()( }{},{ yZxZPyxCzC ZZZ  GRGR   (6) 

where )(P denotes the probability, }{ZR and }{ZG  re-
present the real and imaginary parts of Z respective-
ly, and the pair of real numbers ),( yx can be identifi-

ed with a complex number jyxz  , associating 

with ),( yx and the complex number jyxz  , the 
probability density function of Z is defined as the jo-
int probability density function of }){}{( ZZ GR , i.e. 
                        ),()( }{},{ yxfzf ZZZ GR .                   (7) 

A complex random variable is independent if 
                    )()()( }{}{ yfxfzf ZZZ GR .                  (8) 

The distribution of a complex random vector 
                           ),,,( 21 nZZZ Z                         (9) 
is specified by the joint distribution of real random 
vector }){,},{},{,},{( 11 nn ZZZZ GGRR   

},{}{,},{}{()( 11 nn zZzZP RRRR  ZCZ  

                    }){}{,},{}{ 11 nn ZZzZ GGGG   ,    (10) 

where ),,,( 21 nzzz z denotes the complex-valued 

vector with nijyxz iii ,,2,1,  . The probability 
density function of Z is defined in terms of the joint 
probability density function of n2 real random varia-
bles }{ iZR and }{ iZG , that is 

),,,,,()( 11}{,},{},{,},{ 11 nnZZZZ yyxxff
nn

 GGRRzZ  

 (11) 
Thus, the complex random variables }{ iZ are indepe- 
ndent if 

                         



n

i
iZ zff

i

1

)()(zZ  .                      (12) 

3 System Model 
In this section, a quaternary DS-SSMA system with 
complex signature sequences over Rayleigh fading 
channel is described. As shown in Fig.1, there are K 
simultaneous users that transmit data asynchronous-
ly. The channel inputs and outputs are complex wa-
veforms. Both the modulator and the receiver emp-
loy complex processing. 

3.1 Transmitter model 
The i-th user’s data signal can be expressed as 

                        





l

T
i

li lTtpbtb )()( )(                  (13) 

where the function )(tpT is the rectangular pulse of 

duration T, )},1()21{()( jb i
l  denotes the l-th co-

mplex quaternary data value of the i-th user, and it is 
assumed to take values with equal probability and 
be independently complex uniform, i.e., }{ )(i

lbR and 

}{ )(i
lbG are independent and uniform with the proba- 
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bility 
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The complex spreading signal for the i-th user can 
be expressed as 

                       





m

c
i

mi mTtata )()( )(                  (15) 

where },1{)( ja i
m  denotes the m-th complex chip 

value of the i-th user, which is quadriphase or 4-
phase complex sequence element, and the complex  
 

spreading sequence }{ )()( i
m

i aa  has the period N. The 

function )(t is an arbitrary chip waveform that is ti-

me-limited to ),0[ cT , including the rectangular pulse, 

and cT is the chip duration. It is assumed that there is 
one period of the spreading sequence per data symb-
ol, so cNTT  . Thus, the i-th transmitted signal is de-
scribed by 

             )}(exp{)()(2)( iciiii tjtatbPts   ,        (16) 

where )}(exp{2 ici tjP   is the complex carrier si-

gnal, as shown in Fig.1; iP represents the i-th transm- 

 

 
 

Fig. 1.  DS-SSMA system with complex modulator and complex generalized receiver. 

itted signal power; c is the common complex carrier 

frequency; i is the carrier phase of the i-th carrier, 
which is an independently uniform random variable 
within the limits of the interval )2,0[  . Power contr-
ol is assumed to be perfect, and the transmitted sig-
nal power iP is assumed to be known. 

3.2 Rayleigh fading channel model 
In Fig.1, each signal )(tsi is transmitted over a frequ-
ency non-selective fading channel, where the user 
signals and the interfering signals all experience mu-
tually independent Rayleigh fading. The fading is 
also assumed to be slow such that coherent detection 
is feasible. The channel impulse response for the i-th 
transmitted signal takes the form 
                    )(}exp{)( iiii tjAth    ,               (17) 

where the fading random variables iA , Ki 1 ,are 
independent, Rayleigh distributed and account for 

the fading channel attenuation of all signals. The fa-
ding random variables are assumed to have the same 
probability density function (pdf) and the pdf of iA is 

             










0

0},exp{
)(




                         0, 

   -0.5  
f

2

Ai
              (18) 

with 2][ 2 iAE , ][E denotes the mathematical expec-

tation. In (17), i , Ki 1 are the phases introduced 
by the fading channel and are assumed to be uni-
form within the limits of the interval )2,0[  ; )(t is 

the Dirac impulse function, and i , Ki 1 , are the 
time delays which are assumed to be uniform within 
the limits of the interval ),0[ T and independent. 
     The transmitted signal is further assumed to exp-
erience an additive background thermal band-pass 
noise process 
                       }exp{)()( tjtrtw c ,                     (19) 
where 
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                           )()()( tjytxtr  ,                       (20) 

)(tx and )(ty are independent zero-mean baseband 
Gaussian noise processes, each having power spect-
ral density given by 025.0)( NfS  for Bf 5.0||  and 

0)( fS for Bf 5.0||  , where 0N is the power spect-
ral density of the white Gaussian noise. We assume 
that the bandwidth B of the noise is much greater 
than the bandwidth of the baseband signals )(tbi and 

)(tai . The average power of the band-pass noise 
process is 
                        BtnE 0

2 5.0)]([ N .                       (21) 
    The received signal at the input of the generalized 
receiver takes the following form 





K

i
iiiiii tatbAPtz

1

)()(2)(   

                       )()}(exp{ twtj ic   ,                (22) 
where 
                          iciii    .                      (23) 
All delays are defined by modulo T and all carrier 
phase angles are defined by modulo 2 . This allows 
one to restrict attention to Ti 0 , ,20   i i . 

It is easy to show that i and i can be modelled as 
mutually independent uniform random variables for 
very large c . Hence, in this paper, it is further assu-

med that all iA , i , i are mutually independent rand-
om variables. 

3.3 Generalized receiver 
To coherently demodulate the desired user signal in 
an asynchronous system the conventional generaliz-
ed receiver (see Fig.2) is employed by DS-SSMA 
system. As we mentioned before, the generalized re-
ceiver is constructed in accordance with the genera-
lized approach to signal processing in noise [13]–
[15]. The generalized approach to signal processing 
introduces an additional noise source that does not 
carry any information about the parameters of desir-
ed transmitted signal with the purpose to improve 
the signal processing system performance. This add-
itional noise can be considered as the reference noi-
se without any information about the parameters of 
the signal to be detected. 
     The jointly sufficient statistics of the mean and 
variance of the likelihood function is obtained under 
the generalized approach to signal processing in noi-
se employment, while the classical and modern sig-
nal processing theories can deliver only a sufficient 
statistics of the mean or variance of the likelihood 
function. Thus, the generalized approach to signal 
processing in noise implementation allows us to ob- 
 

tain more information about the desired transmitted 
signal incoming at the generalized receiver input. 
Owing to this fact, the detectors constructed based 
on the generalized approach to signal processing in 
noise technology are able to improve the signal de-
tection performance in comparison with other conv-
entional detectors. 
     The generalized receiver (GR) consists of three 
channels (see Fig.2): the GR correlation detector 
channel (GR CD) – the preliminary filter (PF), the 
multipliers 1 and 2, the model signal generator 
(MSG); the GR energy detector channel (GR ED) – 
the PF, the additional filter (AF), the multipliers 3 
and 4, the summator 1; and the GR compensation 
channel (GR CC) – the summators 2 and 3, the acc-
umulator 1. The threshold apparatus (THRA) device 
defines the GR threshold. As we can see from Fig.2, 
there are two band-pass filters, i.e. the linear syst-
ems, at the GR input, namely, the PF and AF. We 
assume for simplicity that these two filters or linear 
systems have the same amplitude-frequency charac-
teristics or impulse responses. The AF central frequ-
ency is detuned relative to the PF central frequency.  
     There is a need to note the PF bandwidth is mat-
ched with the bandwidth of the transmitted signal 
bandwidth. If the detuning value between the PF and 
AF central frequencies is more than 4 or 5 times the 
transmitted signal bandwidth to be detected, i.e. 4   

sf5 , where sf is the transmitted signal bandwidth, 
we can believe that the processes at the PF and AF 
outputs are uncorrelated because the coefficient of 
correlation between them is negligible (not more 
than 0.05). This fact was confirmed experimentally 
in [26] and [27] independently. 
     Thus, the transmitted signal plus noise can be ap-
peared at the GR PF output and the noise only is ap-
peared at the GR AF output. The stochastic process-
es at the AF and PF outputs present the input stocha-
stic samples from two independent frequency-time 
regions. If the discrete-time noise ][kwi at the PF and 

AF inputs is Gaussian, the discrete-time noise ][ki  
at the PF output is Gaussian and the reference discr-
ete-time noise ][ki  at the AF output is Gaussian, 
too, owing to the fact that the PF and AF are the lin-
ear systems and we believe that these linear systems 
do not change the statistical parameters of the input 
process. 
     Thus, the AF can be considered as a generator of 
the reference noise with a priori information a “no” 
transmitted signal (the reference noise sample) [15, 
Chapter 5].  The noise at the PF and AF outputs can 
be presented as 
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Fig. 2.  Generalized receiver structure. 
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(24) 

where ][mgPF and ][mgAF are the impulse responses  
of the PF and AF, respectively.  
     In a general, under practical implementation of 
any detector in communication system with sensor 
array, the bandwidth of the spectrum to be sensed is 
defined. Thus, the AF bandwidth and central freque-
ncy can be assigned, too (the AF bandwidth can not 
be used by the transmitted signal because it is out of 
its spectrum). The case when there are interfering si-
gnals within the AF bandwidth, the action of this in-
terference on the GR detection performance, and the 
case of non-ideal condition when the noise at the PF 
and AF outputs is not the same by statistical param-
eters are discussed in [28] and [29]. 
     Under the hypothesis 1H (“a yes” transmitted sig-
nal), the GR CD generates the signal component 

][][ ksks i
m
i caused by interaction between the model 

signal ][ksm
i ,the MSG output, and the incoming sig-

nal ][ksi , and the noise component ][][ kks i
m
i  caus-

ed by interaction between the model signal ][ksm
i  

and the noise ][ki at the PF output. GR ED genera-

tes the transmitted signal energy ][2 ksi and the rand-

om component ][][ kks ii  caused by interaction bet-

ween the transmitted signal ][ksi and the noise ][ki  
at the PF output. The main purpose of the GR CC is 
to cancel completely in the statistical sense the GR 
CD noise component ][][ kks i

m
i  and the GR ED rand-

om component ][][ kks ii  based on the same nature of 

the noise ][ki . The relation between the transmitted 

signal to be detected ][ksi and the model signal ][ksm
i  

is defined as: 

                                 ,][][    ks ks i
m
i                         (25) 

where  is the coefficient of proportionality. 
     The main functioning condition under the GR 
employment in any signal processing system includ-
ing the communication one with radar sensors is the 
equality between the parameters of the model signal 

][ksm
i and the incoming signal ][ksi , for example, by 

amplitude. Under this condition it is possible to can-
cel completely in the statistical sense the noise com-
ponent ][][ kks i

m
i  of the GR CD and the random co-

mponent ][][ kks ii  of the GR ED. Satisfying the GR 

main functioning condition given by (25), ][ksm
i   

][ksi , 1 ,we are able to detect the transmitted sig-
nal with the high probability of detection at the low 
signal-to-noise ratio (SNR) and define the transmitt-
ed signal parameters with high accuracy. 
     Practical realization of this condition (25) at   

1  requires increasing in the complexity of GR struc-
ture and, consequently, leads us to increasing in co-
mputation cost. For example, there is a need to emp-
loy the amplitude tracking system or to use the off-
line data samples processing. Under the hypothesis 

0H  (“a no” transmitted signal), satisfying the main 

GR functioning condition (25) at 1 we obtain on-

ly the back-ground noise ][][ 22 kk ii   at the GR out-
put. 
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     Under practical implementation, the real structu-
re of GR depends on specificity of signal processing 
systems and their applications, for example, the rad-
ar sensor systems, adaptive communication systems, 
cognitive radio systems, satellite communication sy-
stems, mobile communication systems and so on. In 
the present paper, the GR circuitry (Fig.2) is demon-
strated with the purpose to explain the main functio-
ning principles. Because of this, the GR flowchart 
presented in the paper should be considered under 
this viewpoint. Satisfying the GR main functioning 
condition (25) at 1 , the ideal case, for communi-
cation systems with radar sensor applications we are 
able to detect the transmitted signal with very high 
probability of detection and define accurately its pa-
rameters. 
     In the present paper, we discuss the GR implem-
entation in communication systems using the radar 
sensor array. Since the presented GR test statistics is 
defined by the signal energy and noise power, the 
equality between the model signal ][ksm

i and the tra-

nsmitted signal to be detected ][ksi , in particular by 
amplitude, is required that leads us to high circuitry 
complexity in practice. For example, there is a need 
to employ the amplitude tracking system or off-line 
data sample processing. Detailed discussion about 
the main GR functioning principles if there is no a 
priori information and there is an uncertainty about 
the parameters of transmitted signal, i.e., the trans-
mitted signal parameters are random, can be found 
in [13] and [14, Chapter 6, pp.611–621 and Chapter 
7, pp. 631–695]. 
     The complete matching between the model sig-
nal ][km

is and the incoming signal ][ksi , for example 
by amplitude, is a very hard problem in practice be-
cause the incoming target return signal ][ksi depends 
on both the fading and the transmitted signal param-
eters and it is impractical to estimate the fading gain 
at the low SNR. This matching is possible in the ide-
al case only. The GD detection performance will be 
deteriorated under mismatching in parameters bet-
ween the model signal ][km

is and the transmitted sig-

nal ][ksi and the impact of this problem is discussed 
in [18] and [30], where a complete analysis about 
the violation of the main GR functioning requirem-
ents is presented. The GR decision statistics requires 

an estimation of the noise variance 2
  using the ref-

erence noise ][ki at the AF output. 

Under the hypothesis 1H ,the signal at the PF out-
put, see Fig. 2, can be defined as 

                         ][][][ kkskx iii   ,                      (26) 

where ][ki is the noise at the PF output and 

                            ][][][ kskhks ii  ,                        (27) 

where ][khi are the channel coefficients. Under the 

hypothesis 0H and for all i and k, the process ][kxi       

][ki at the PF output is subjected to the complex 
Gaussian distribution and can be considered as the 
independent and identically distributed (i.i.d.) pro-
cess. 
     In ideal case, we can think that the signal at the 
AF output is the reference noise ][ki with the same 

statistical parameters as the noise ][ki . In practice, 
there is a difference between the statistical parame-
ters of the noise ][ki and ][ki . How this difference 
impacts on the GR detection performance is discus-
sed in detail in [14, Chapter 7, pp. 631-695] and in 
[18] and [30]. 

The decision statistics at the GR output present-
ed in [13] and [14, Chapter 3] is extended for the ca-
se of antenna array when an adoption of multiple 
antennas and antenna arrays is effective to mitigate 
the negative attenuation and fading effects. The GR 
decision statistics can be presented in the following 
form: 
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
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 ,     (28)   

where 
                          )N(),...,( 10  xxX                    (29) 

is the vector of the random process at the PF output  
and GRTHR is the GR detection threshold. 

     Under the hypotheses 1H and 0H and when the am-
plitude of the transmitted signal is equal to the amp-
litude of the model signal, ][][ ksks i

m
i  , the GR deci-

sion statistics )(XGDT takes the following form in the 
statistical sense, respectively: 
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     In (30) the term s
N

k

M

i i Eks   

1

0 1
2 ][ corresponds 

to the average transmitted signal energy, and the 
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term    

 



 


1

0 1
21

0 1
2 ][][

N

k

M

i i
N

k

M

i i kk  is the backgro-

und noise at the GR output. The GR output backgro-
und noise is a difference between the noise power at 
the PF and AF outputs. Practical implementation of 
the GR decision statistics requires an estimation of 
the noise variance 2

 using the reference noise ][ki  

at the AF output. 

3.4 Generalized receiver in DS-SSMA system 
Fig.1 represents a conventional generalized receiver, 
a block diagram of which is demonstrated in Fig.2, 
to coherently demodulate the desired user signal in 
an asynchronous system. It should be noted that ea-
ch user signal undergoes a Rayleigh flat-fading cha-
nnel, thus, an equalizer is not included in the receiv-
er. By symmetry, mathematical derivation of the av-
erage error probability is the same for all users. We 
assume, without loss of generality, the i-th user is 
the target one and 0 ii  . Hence, all delays and 
carrier phase shifts are measured relative to those of 
the i-th signal. The decision statistic is the output of 
a complex generalized receiver that employs the co-
mplex carrier }exp{ tj c and the complex spreading 

signal )(tai
 . 

     The output of the complex generalized receiver 
matched to the i-th signal is the random variable gi-
ven by  

    
T

ciGR dttjttztatzT
i

0

22 }exp{)]()()()(2[  .  (31)  

Taking into consideration the general ideal conditi-
on of functioning of the generalized receiver 1  

and ][][ ksks i
ms
i  , we can rewrite (31) in the follow-

ing form: 

          )(2),,( )(
0 tTbAPbIT i

i
iiiGRi

  ,      (32) 

where )(2 ti is the background noise defined as 

                     
T

iii dtttt
0

22 )]()([)(                  (33) 

and ),,( bIi is the total multiple-access interferen-
ce (MAI) defined as 
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with 
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for T0 .Along the lines of [4], it is easy to show 
that for T0 , these two cross correlation functi-
ons can be written in the following form: 
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(37) 
where  cTl  is the integer part of cT ; )(sR and 

)(ˆ sR are the continuous-time partial autocorrelation 

functions of the chip waveform defined as  
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for cTs 0 and zero otherwise. Therefore, the mul-
tiple-access interference (34) can be presented in the 
following form: 
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ki TlRl     ,               (39) 

where  cTl  , }3,2,1,0{n  satisfies }2exp{ nj     


 )( )(
0

)(
1

ii bb and )()(
, ln
ki is the complex quaternary corre-

lation function defined in [31] as 
          }2exp{)()()( ,,

)(
, njNlClCl kiki
n
ki          (40) 

with 10  Nl . Obviously, )()0(
, lki is the complex 

quaternary periodic cross correlation function and 
)()(

, ln
ki , 3,2,1n is the quaternary odd cross correlati-

on function. 

4 System Performance 
In this section, the exact formulas for the average bit  
error rate (BER) for the synchronous system with 
quaternary signal and complex sequences over Ray-
leigh fading channel is derived first. Thereafter, the 
average BER for quaternary asynchronous system 
with quaternary signal and complex sequences over 
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Rayleigh fading channel is evaluated using the cha-
racteristic function approach. The Gaussian approxi-
mate average BER for the asynchronous system un-
der consideration is obtained with the MAI being 
modeled as a complex Gaussian random variable. A 
symbol error occurs in the complex processing sys-
tem if the decision statistic )(XiGDT is not in the same 

quadrant of the complex plane as the data symbol 

from the desired signal. Since )}1)(21{()( jb i
l   

are the quaternary phase data, the method in [32] 
can be adopted with some modifications to include 
the interference action. Thus, simple computations 
show that for Gray-coded quaternary signal transmi-
ssion system with complex sequences in the flat Ra-
yleigh fading, the average BER of the i-th Rayleigh 
faded user is given by 
                   )]()([5.0 GR ii PEPEBER  ,               (41) 

where RiP is the average BER that }{
iGRTR is not of the 

same polarity as 21}{ )(
0 ibR and GiP is the avera-

ge probability that }{
iGRTG is not of the same polarity 

as 21}{ )(
0 ibG . The expectation operator E is ta-

ken over the random vectors ,,τb and random vari-
able iA , which are assumed to be mutually indepen-
dent.  

4.1 Synchronous BER Analysis 
In this subsection, we consider the BER calculation 
for a synchronous system, i.e., 021  K   in 
(22). The exact BER for the synchronous system 
with complex spreading sequences in Rayleigh fad-
ing is derived here. The presented derivation both 
serves completeness and clarifies the derivation and 
understanding of the asynchronous results in the 
next subsection. Let us describe the BER property of 
the synchronous system under consideration. We 
consider the synchronous DS-SSMA system with 
complex signature sequences and complex generali-
zed receiver over flat Rayleigh fading channel pres-
ented in Fig.1. Then the average synchronous BER 
for a Rayleigh-faded user is 
        )1(5.0][5.0 sii BERBERBER  GR ,       (42) 

where TPE ii  is the energy per data symbol and 
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Let us show it. The output of the complex generaliz-
ed receiver matched to the i-th signal is given by 
(31) and (32), where )()()( ttt iii GR   is as (33) 

with )(tiR and )(tiG being independent random va-

riable distributed according to the modified second 
kind Bessel function of an imaginary argument or, 
as it also called, McDonald function each having the 
mean 40

22 TN
ii


GR   and variance 22
016

1 TN  in the 

simplest ideal case when 22
   , i.e., the power of 

the noise at the PF and AF of the generalized receiv-
er are equal between each other. In the statistical se-
nse we can assume that )(ti can be considered as the 
random process with asymptotic Gaussian distributi-
on with the mean 40

22 TN
ii


GR   and variance 

22
0)161( TN . 

     In view of (37) and (38) 
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where 
21

}exp{ iiiii jDDjAD   is the zero-mean  

complex Gaussian variable with the unit variance, 
i.e.,

1i
D and

2i
D are the independent zero-mean real 

Gaussian variables with unit variance. This is true 
since iA is the Rayleigh distributed; i is the unifor-

mly distributed within the limits of the interval ,0[  

)2 and iA and i are independent; )(
0
ib takes the valu-

es within the limits of the interval )}1)(21{( j  
with independent complex uniform, and is indepen-
dent of iD , so )(

0
i

ii bDD  is the independent zero-me-
an complex Gaussian variable with the unit varian-
ce. Note that K

i
i

ii bA 1
)(

0 },,{  are mutually independent 

complex random variables, hence, iI is the complex 
Gaussian random variable with the real and imagi-
nary parts being zero-mean real independent Gaus-
sian random variables and each having variance 
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     Define 
                  

21
)(),,( iiiii IjItbII   ,           (46) 

with
1i

I  and
2i

I  being the real and imaginary parts of 

iI  . Then it follows from (44) and (45) that
1i

I  and
2i

I   

are the independent asymptotic zero-mean Gaussian 
random variables with the variances 22

RR iiI   and 
22

GG iiI   , respectively, i.e., iI  is the complex Gau-

ssian random variable. By symmetry and using the 
independence of iI  and i , given iA , the average co-
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nditional BERs for the real and imaginary parts of 
the i-th user are 

ii AiAi BERBER || GR   

       



































K

kii
kiki

i

ii

TN
CC

N

TP

TAP
Q

,1

22
0

,,2

2

16
)0()0(

2
,    (47) 

where 
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Averaging over iA with respect to the Rayleigh dist- 
ribution in (18) and using the integral identity  
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the average synchronous BER for a Rayleigh-faded 
user is obtained in (42). Note that UCHT sequences 
are orthogonal, i.e., kiС ki  ,0)0(, ; s in (42) for 

quaternary synchronous systems with complex 
UCHT sequences reduces to  
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This shows that the output of the i-th generalized re-
ceiver is not affected at all by the signals of other 
users, and it is only affected by the background noi-
se and the Rayleigh fading. 

4.2 Asynchronous BER Analysis 
In this subsection, the average BER calculation for 
asynchronous DS-SSMA system with complex sig-
nature sequences is investigated. The channel is ass-
umed to be the Rayleigh fading and complex proce-
ssing is adopted for the modulator and generalized 
receiver. 

4.2.1. Characteristic Function Approach 
Define 
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Then, (39) can be written in the following form: 
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Since 
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is the independent zero-mean complex Gaussian 
with the unit variance, then, given ),( )(

1
)(

0
)( iii bbb  and 

i , 

                        GR ,,,,, kikiki jIII                          (55) 

is the independent zero-mean complex Gaussian 
with the variance 
                     2)(

,
2

,,
2

,, ||2 n
kiikiki dP GR  .               (56) 

This implies that the conditional probability density 
function for kiI , takes the following form: 
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Note that 
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averaging over )(ib , we obtain 
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Since 2)(
, || n
kid , 3,2,1,0n  appears in the denominators 

of the exponential function arguments, thus it is dif-
ficult to average over i . In order to solve this, we 
employ the characteristic function approach. The 
characteristic function of kiI , , given i , takes the fol-

lowing form: 
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Averaging over i , the characteristic function of kiI ,  

takes the form: 
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If the chip waveform )(t is the rectangular pulse of 

duration cT , i.e., 1)( t for cTt 0 and 0)( t  oth-

erwise. Then for this waveform,  )(R and )(ˆ R   

 cT . Let 
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so )1,0[iu . Then (61) reduces to 
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where 
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In order to calculate ),( 21|,
 ikiI , let us show that 
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and in the case of )1()( )(
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In this case 
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Consider the next statement. Let 
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Thus, (70) is obtained. Now, the characteristic func-
tion of kiI , can be presented in the following form: 
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with ),,( 21
)(

1  i
n l is given by (70). Note that the ab-

ove characteristic function is given as an explicit 
closed-form expression involving only the exponen-
tial function and Q-functions. It can be readily prog-
rammed for direct evaluation. Moreover, it is easy to 
show that 
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Since the complex random variables kiI , , ,1 Ki     

ki  from different interferers are independent, the 
characteristic function for the total multiple-access 
interference term iI is given by 
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Let iii I   , where i  is the complex zero-mean 
Gaussian random variable in the statistical sense re-
presenting the background noise [14]. Since the oth-
er user interference and background noise are indep-
endent, the characteristic function of i takes the fol- 
lowing form: 
              ),(),(),( 212121   iii I   ,       (78) 

where ),( 21  i
 is the characteristic function of the 

background noise i . Then the marginal characteris-

tic functions of i are given by 
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It follows from (73)-(79) that the marginal characte-
ristic functions of iii I   satisfy the following eq-
uality )()(   GR ii

 . Therefore, by symmetry, 

the conditional BER for the target user can be given 

iiii AiAiAiA BERBERBERBER ||| )(5.0 RGR   

})({ TAPBER iii  R  
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Using the integral identity 
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and averaging over iA , we obtain the average BER 
for a Rayleigh faded user given by 
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(82) 
     Consider the DS-SSMA quaternary asynchrono-
us system with complex sequences and complex re-
ceivers over Rayleigh fading channels shown in Fig. 
1. If the chip waveform is a rectangular pulse, then 
the average BER of Rayleigh-faded user can be giv-
en by (82). Note that the above-mentioned BER in 
(82) is expressed as the Q-functions and single inte-
gral. Numerical integration techniques similar to 
[33] that uses Simpson’s rule and series expansion 
method can be applied to obtain BER with high ac-
curacy. 

4.2.2 Gaussian Approximation 
The high accuracy BER for asynchronous system 
under consideration can be obtained from previous 
discussion. However, it would generally require ex-
cessive computations. Hence, here we shall compute 
the average BER for asynchronous complex DS-
SSMA system in flat Rayleigh fading by modeling 
multiple-access interference in (34) as a complex 
Gaussian process. Obviously, the mean of the multi-
ple-access interference reduce to zero and the varia-
nce is given by 
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where the mathematical expectation has been comp-
uted with respect to mutually independent complex 

random variables K
i

ii
ii bbA 1

)(
0

)(
1 |},,,{  and the random 

variables given by  (54)  being  zero-mean  complex  
Gaussian with the unit variance. It is trivial to show 
that 
            0)]([)]([)]()([  kkkk IEIEIIE GRGR       (84) 
with that, the real and imaginary parts of random va-
riable kI are uncorrelated and orthogonal. Therefore, 

if kI is assumed to be complex Gaussian random var-
iable, then it is independent. In the case of a rectang-
ular wave shape function cTt  t  0,1)( , then 

ssR )( and sTsR c )(ˆ
 . Hence, following the 

treatment in [4] and substituting (37) in (83), we ob-
tain 
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Similar to analysis for the synchronous case, given 

kA , the average conditional BERs for the real and 
imaginary parts of the i-th user in the asynchronous 
case are 
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(88) 
Averaging over kA with respect to the Rayleigh dist-
ribution in (18), the average asynchronous BER for a 
Rayleigh-faded user takes the following form: 
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Based on the Gaussian approximation of the multip-
le-access interference, the average BER evaluation is 
approximately obtained in (89) for quaternary asyn-
chronous DS-SSMA system with complex signature 
sequences, as well as complex transmitters and rece- 
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ivers in Rayleigh fading as depicted in Fig.1. 
    From [25] 
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Therefore 
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(92) 
This shows that the BER performance for asynchro-
nous system over Rayleigh  fading  channel  can  be  
obtained from aperiodic autocorrelation functions. 

5 Numerical Results 
In this section, we report the numerical evaluation of 
the system performance for Gold sequences, ne-ar-
optimum four phase sequences of family A [34] and 
UCHT sequences. As was discussed previously, 
there are 64 sets of UCHT matrices, and each set 
can generate n2 complex sequences with the period 
duration of nN 2 . It has been investigated in [10] 
that not all the UCHT sequences generated from one 
UCHT matrix can be simultaneously used as the 
spreading sequences, as this will lead to large perio-
dic and aperiodic cross correlation values. 
     In order to reduce the multiple-access interferen-
ce effectively, the subset of the complex sequences 
with smaller sum of aperiodic cross correlation val-
ues is selected for simulation, but a consideration of 
trade-off between the autocorrelation and cross cor-
relation properties for spreading sequences suggests 
that the subset with the smallest sum must be avoid-
ed. High-speed UCHT sequences are also recomme-
nded to be more suitable for the asynchronous DS-
SSMA communication systems than non-high speed 
UCHT sequences [9]. 
     Hence, in this section, we will choose 21 , j   

j 3,1  and 6426 N  as one set of non-high-
speed UCHT sequences which have relatively good 
autocorrelation and cross correlation among the 
UCHT sequences [10]. On the other hand, the Gold 
sequences are produced by a preferred pair of m-se-
quences u and v, where u is obtained by using primi-
tive polynomials 
                                16

1  xxf                         (93) 
and v is obtained by using 
                       1256

2  xxxxf  .                (94) 

     Thus, the period of the Gold sequences is 63N , 
and it has 65 different sequences belonging to the set 

},,,,,,{),( 12 vuvuvuvuvuvu N TTTP  (95) 

whereT is the shift operator. The 4-phase family A  
sequences are produced by using the primitive poly-
nomials 
                        132 36

3  xxxf .                    (96) 

So, the period of 4-phase sequences is 63N with 65 
different sequences. In the simulations, equal trans-
mission power, for simplicity, is assumed for each 
user and 
                          121  KPPP   .                 (97) 
The BER performance of quaternary synchronous 
DS-SSMA system over Rayleigh fading channels is 
shown in Figs. 3 and 4, where the active users are K  

16,8  K and 30K , respectively.  
 

 
Fig. 3. BER performance for synchronous DS-SSMA 
with active users .16,8K  

 

 
Fig. 4. BER performance for synchronous DS-SSMA 
with active users .30,8K  
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     It can be seen that the performance of the UCHT 
sequences is the best among the three sequences, 
and the Gold sequences also perform better than 4-
phase family A sequences at the synchronous condi-
tions. The reason is that UCHT sequences are ortho-
gonal, i.e., .,0)0(, kiC ki  As to the Gold sequences, 

ki  C ki  if,1)0(, and the v in the set of Gold sequen-

ces ),( vuP is not chosen as spreading sequence. For  

The 4-phase family A sequences, ,,0)0(, kiC ki   

could be ,7,1 j81,9  and each occurs many tim-
es. Hence, in view of (42), the BER performance in 
Figs.3 and 4 are reasonable. Furthermore, for UCHT 
sequences, the curves of BERs are the same for all 
different number of users, such as .30,16,8K How-
ever, for the Gold sequences and 4-phase family A  
sequences, the curves of BERs are different for K    

.30,16,8  
 

 
Fig. 5. BER performance for asynchronous DS-SSMA 
with active users .8K Correlation receiver is represe-
nted for UCHT and Gaussian approximation. 
 
     Finally, Figs. 5-7 show the accurate BER compu-
ted using the characteristic function approach as 
well as the BER obtained by the Gaussian approxim- 
ation method described in the previous section for 
quaternary  asynchronous  DS-SSMA  systems  with 
the Rayleigh fading channels, where the active users 
are 30,16,8K , respectively. In the asynchronous ca-
se, the cross correlation of the Gold sequences, 

,63|,|,),(, lkilC ki  could be 15,17,1  and each value 

occurs many times. The distributions of aperiodic 
cross correlation values are different for the Gold 
and 4-phase family A sequences, but they are simil-
ar. Thus, the Gold and 4-phase family A sequences 
belong to pseudo-random spreading sequences and  

have similar correlation properties. 
 

 
Fig. 6. BER performance for asynchronous DS-SSMA 
with active users .16K  
      

 
Fig. 7. BER performance for asynchronous DS-SSMA 
with active users .30K  
 
     It has also been shown that the UCHT complex 
sequences offer the better cross correlation properti-
es compared with the Gold sequences [10]. In view 
of (82) and (89), the BER performance is mainly de-
termined by the cross correlation properties of the 
signature sequences. Figures 5-7 have verified this. 
That is to say, the asynchronous system under consi-
deration with UCHT sequences outperforms that 
with the Gold and 4-phase family A sequences, and 
the BER performance using the Gold sequences is 
also close to that using the 4-phase family A sequen-
ces. 
     We also derive from our numerical results prese- 
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nted in Figs. 5-7 that the BER estimates based on the 
complex Gaussian approximation consistently over-
estimate the accurate BER computed via the charac-
teristic function method for the asynchronous quar-
ternary DS-SSMA system in the Rayleigh fading 
channels with complex processing at the transmitter 
and receiver. Comparative analysis between the asy-
nchronous DS-SSMA systems constructed on the 
basis of the generalized receiver and correlation one 
is represented in Figs. 5-7. We can see superiority in 
the BER performance under employment of the ge-
neralized receiver in DS-SSMA communication 
systems with active users in comparison with imp-
lementation of the correlation one in these systems.  

6 Conclusions 
This paper investigates the performance of quaterna-
ry DS-SSMA communications, which are construct-
ed on the basis of the generalized approach to signal 
processing in noise, with complex signature sequen-
ces, as well as complex transmitters and receivers 
over the Rayleigh fading channels. The average BER 
is first derived for the quaternary synchronous syst-
ems. Due to the orthogonal property of UCHT sequ-
ences, the probability of bit errors of the synchrono-
us DS-SSMA systems with UCHT sequences is lo-
wer in comparison with the synchronous systems 
with other non-orthogonal sequences. 
     The average BER is also evaluated for the quarte-
rnary asynchronous DS-SSMA systems with comp-
lex transmitters and generalized receivers based on 
the characteristic function approach, and the appro-
ximate result is also given based on the Gaussian ap-
proximation method of multiple-access interference. 
Numerical results are presented to illustrate perfor-
mance comparisons among systems employing the 
UCHT sequences, 4-phase family A sequences and 
Gold sequences. The simulation results show that 
the UCHT complex sequences can yield the better 
performance than other two sequences. Comparative 
analysis of the asynchronous DS-SSMA systems 
employing the generalized receiver demonstrates a 
superiority in of BER performance over asynchrono-
us DS-SSMA systems implementing the correlation 
receiver. 
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